
Kenji Doya
This course is based on a book KD is writing, "Brain Computation: A Handson Guidebook" using Jupyter notebook with Python codes.
The course will be in a "flipped learning" style; each week, students read a draft chapter and experiment with sample codes before the class.
In the first class of the week, they present what they have learned and raise questions.
In the second class of the week, they 1) present a paper in the reference list, 2) solve exercise problem(s), 3) make a new exercise problem and solve it, or 4) propose revisions in the chapter.
Toward the end of the course, students work on individual or group projects by picking any of the methods introduced in the course and apply that to a problem of their interest.
Students are assumed to be familiar with Python, as covered in the Computational Methods course in Term 1, and basic statistics, as coverd in the Statistical Tests and Statistical Modeling courses in Term 2.
Prior knowledge
Assumes good knowledge of statistics and ability to look at biological problems in a mathematical way.
OIST courses to complete beforehand: B31Statistical Tests and/or B32 Statistical Modeling
3
Term
2
Credits

Síle Nic Chormaic
Review of geometrical optics; wave properties of light and the wave equation; Helmholtz equation; wave optics, including Fresnel and Fraunhofer diffraction, transfer functions, coherence, auto and crosscorrelation; Gaussian and nonGaussian beam profiles; quantum optics and photon statistics; spin squeezing; applications of optics including fiber optics, laser resonators, laser amplifiers, nonlinear optics, and optical trapping; quantum properties of light; interaction of photons and atoms.
2
Term
2
Credits

Thomas Busch
Advanced course in Quantum Mechanics, based on recent theoretical and experimental advances. Evolution in Hilbert space and quantum bits; conditional quantum dynamics; quantum simulations; quantum Fourier transform and quantum search algorithms; iontrap and NMR experiments; quantum noise and master equations; Hilbert space distances; Von Neumann entropy; Holevo bound; entanglement as a physical resource; quantum cryptography; lab: quantum eraser, interaction free measurement.
Prior knowledge
Solid undergraduate Quantum Mechanics preparation.
Students may wish to take this with A273 Ultracold Quantum Gasses and A218 Condensed Matter Physics.
2
Term
2
Credits

Síle Nic Chormaic
Advanced level course in atomic physics. Progress in laser control of atoms has led to the creation of BoseEinstein condensates, ultrafast time and frequency standards and the ability to develop quantum technologies. In this course we will cover the essentials of atomic physics including resonance phenomena, atoms in electric and magnetic fields, and lightmatter interactions. This leads to topics relevant in current research such as laser cooling and trapping.
2
Term
2
Credits

Mahesh Bandi
Explore the concepts and techniques of classical analytical mechanics so essential to a deep understanding of physics, particularly in the areas of fluid dynamics and quantum mechanics. Develop from the basic principles of symmetry and least action to the Galilean, Lagrangian, and Newtonian equations of motion and laws of conservation. Use the Lagrange formalism to describe particle motion in multiple modes, before exploring the equations of Euler and Hamilton, and canonical transformations. Use the calculus of variation to develop Maupertuis's principle and the HamiltonJacobi equations, and build a starting point for the consideration of waves in other courses. Ongoing homework exercises and small exams provide continuing assessment.
3
Term
2
Credits

Fujie Tanaka
Build a strong foundation of modern synthetic organic chemistry strategies, including stereoselective, enantioselective, and asymmetric methods. Through lectures and studies using books and research articles, explore a range of mechanisms of catalytic reactions, controlling reaction pathways, and molecular interactions essential in organic reactions and in the design and synthesis of catalysts, functional small organic molecules, and protein conjugates.
Prior knowledge
Requires undergraduate organic chemistry or biochemistry.
2
Term
2
Credits

Akihiro Kusumi
Explore concepts of biophysics including thermal conformational fluctuation and thermal diffusion, and consider how cells might take advantage of these physical processes to enable their functions. Discover how the cell membrane system functions in light of these physical processes to fulfil its critical contribution to cell signal transduction and metabolism. With extensive use of student presentations about topics of cellular signaling in the context of cellular cancer biology, immunology, and neurobiology, discuss the dynamic structures of the plasma membrane, including domain structures, tubulovesicular network, endocytosis and exocytosis, and cytoskeletal interactions. Learn methods of singlemolecule imagingtracking and manipulation for directly “seeing” the thermal, stochastic processes exhibited by receptors and downstream signaling molecules during signaling in live cells.
Prior knowledge
Biology, chemistry, or physics at undergraduate levels
3
Term
2
Credits

Tomoyuki Takahashi
A course on cellular neurobiology with an emphasis on seminars and student presentations of classic papers in the historical development of the field. Discussionbased learning on core topics in cellular neuroscience ranging from membrane potentials, electrical properties of neurons, ion channels structure, biophysics and pharmacology, to techniques for recording electrical activity in single channels, whole neurons, and between neurons. Explore membrane biophysics using fundamental models of ionic currents and membrane potentials such as the GoldmanHodgkinKatz and the HodgkinHuxley equations. Experience these techniques in various settings using stateoftheart equipment for intra and extracellular voltage recording, voltage clamp, and current clamp in the laboratory.
Prior knowledge
An introductory neuroscience course is recommended.
1
Term
2
Credits

Tsumoru Shintake
Learn the theory and application of classical electrodynamics and special relativity, covering the essential equations and their applications, and build a firm grounding for later studies of quantum physics. Through lectures and exercises, an understanding of static electromagnetic fields is extended through Maxwell’s equations to a discussion of dynamic vector fields and electromagnetic waves. Numerous physical and technical applications of these equations are used to illustrate the concepts, including dielectrics and conductors, wave guides, and microwave engineering. Special relativity is introduced with discussion of relativistic and nonrelativistic motion and radiation, using linear accelerators and synchrotron radiation as illustrative applications. Demonstrate understanding and application of these concepts in midterm and final exams.
Prior knowledge
Undergraduate level knowledge of mechanics, and calculus and vector mathematics.
2
Term
2
Credits

Jun Tani
Explore the principles of embodied cognition by a synthetic neurorobotics modeling approach in combination with handson neurorobotics experiments and related term projects. Combine related interdisciplinary findings in artificial intelligence and robotics, phenomenology, cognitive neuroscience, psychology, and deep and dynamic neural network models. Perform neurorobotics simulations and control experiments with extensive coding in C++ or Python. Critically analyze and report on recent papers in neurorobotics and artificial intelligence.
Prior knowledge
Basic mathematical knowledge for the calculus of vectors and matrices and the concept of differential equations are assumed. Programming experience in Python, C or C++ is also required.
1
Term
2
Credits

Marco Edoardo Rosti
Numerical solutions to partial differential equations have wide application in many areas of physics, mechanics, engineering, and applied mathematics. Learn different techniques for solving elliptic, parabolic and hyperbolic equations, such as finite differences and finite volumes. Discuss possibilities and limitations of numerical techniques. Evaluate and comment on the stability and convergence of these numerical methods. Explore systems of partial differential equations and the NavierStokes equations. Use Python or MATLAB coding in weekly exercise sessions to numerically solve diffusion, convection and transport problems in multiple dimensions.
Prior knowledge
Requires good background in partial differential equations.
A basic knowledge of Python, MATLAB or any other programming language is preferred but not essential.
3
Term
2
Credits

Erik De Schutter
Explore topics in computational neuroscience, from single neuron properties to networks of integrateandfire neurons. Review the biophysical properties of neurons and extend these findings to cable theory and passive dendrite simulations. Study excitability based on the HodgkinHuxley model of the action potential and the contributions of various other ion channels. Review phase space analysis, reactiondiffusion modeling and simulating calcium dynamics. Model single neurons, neuronal populations, and networks using NEURON software. Discuss seminal papers associated with each topic, and produce reports on modeling exercises.
Prior knowledge
Requires introductory neuroscience course or equivalent with background knowledge in computational methods, programming, mathematics.
2
Term
2
Credits

Yejun Feng
Condensed matter physics has evolved from solid state physics into a subject which focuses on collective behavior, symmetry, and topological states. This course provides an introduction to the field, arranged along three major concepts of lattice, electrons, and spins. We survey both central theoretical concepts and their experimental demonstrations, such as Landau levels and quantum Hall effects, superconductivity, and magnetic excitations. Several of these topics are developed from fundamental concepts to an advanced perspective.
Prior knowledge
Undergraduate level quantum mechanics and statistics.
2
Term
2
Credits

Timothy Ravasi
Discover the largest and most complex biological structures on earth in this introduction to tropical coral reefs and the organisms and processes responsible for their formation. From an overview of reefs and their tropical marine environment, expand into the evolution, systematics, physiology, ecology and symbiosis of reef building corals. Learn about structure and ecological dynamics of coral reef fish communities, and the major characteristics of other key animals and plants on reefs. Recognize key processes on shallow and deep reefs, and variability among reefs, including those of the Okinawan area. Examine cuttingedge questions in coral reef biology and conservation. Critically analyze natural and human disturbances to reefs with an emphasis on current models of management and conservation. Design a marine refuge area based on ecological and conservation principles. Develop practical skills in sample and survey methods via snorkeling activities.
Prior knowledge
Undergraduate knowledge of general biology and zoology. Able to swim and snorkel for the field trip component of the course.
3
Term
2
Credits

Ichiro Masai
This course introduces fundamental principles and key concepts in the developmental processes of animal organisms, by focusing on Drosophila embryonic development and vertebrate neural development as models, and will facilitate graduate students to reach a professional level of understanding of developmental biology. Furthermore, genetic tools for live imaging of fluorescencelabeled cells using Drosophila and zebrafish embryos will be introduced as practical exercises. The course also includes debate on specific topics in developmental biology by students and a writing exercise of mockgrant application. Some lecturers outside OIST will be invited to present particular special topics.
2
Term
2
Credits

Matthias Wolf
An introduction to transmission electron microscopy techniques and applications in biology. Learn important concepts of the physics of image formation and analysis, which require a basic level of mathematics. Learn about sample handling, contrast enhancement, alignment, and image processing. Read and analyze relevant scientific papers and discuss jointly during student presentations. Practical demonstrations and handson exercises provide an opportunity to comprehend the concepts by experimenting with commonlyused image processing software. An emphasis will be given to highlighting common properties between diffraction and image data and how to take advantage of tools from both techniques during the final image processing projects.
Prior knowledge
Undergraduate mathematics.
3
Term
2
Credits

Academic technical English is a specialized area with particular requirements for clarity in the communication of difficult concepts. Research students for whom English is not their primary language may need to develop their English language proficiency to enable more effective communication in the areas of science and technology.
English for Higher Education in Science and Technology is an optional course for those students for whom English is a second language, and will provide training and practice in technical and scientific English, allowing students to participate more effectively in the OIST program, and beyond. English for Higher Education in Science and Technology
covers such topics as academic vocabulary, critical reading and understanding of academic text, listening skills, paraphrasing and summarizing scientific text, delivery of presentations, participation in academic debates and discussions, research skills including electronic research and presentation of results, and structuring an argument for academic texts and essays.
All
Term
1
Credits

Hidetoshi Saze
Epigenetic regulation of gene activity is essential for development and response to environmental changes in living organisms. Discover fundamental principles and key concepts of epigenetics, including the specific molecular mechanisms and structural changes. Examine these changes in the context of modifying factors such as transposable elements, RNA interference, and dosage compensation. Discuss recent advances in epigenetic reprogramming, stem cell applications, and the influence of epigenetic changes on disease. Critically review and discuss original research publications about epigenetic phenomena.
Prior knowledge
Requires at least advanced undergraduate level Cell Biology and Genetics or similar background knowledge
3
Term
2
Credits

Research students from countries other than Japan may have limited ability in the Japanese language. While the teaching and research language used at OIST is English, the availability of English outside the OIST campus is limited. Essential Japanese for Foreign Researchers is an optional course for students from NonJapanesespeaking countries.
This course aims to ensure competence in Japanese language sufficient for working in a laboratory in Japan. It includes basic Japanese language equivalent to at least the Japanese Language Proficiency Test level N5. In addition, it will include a course on reading Japanese for laboratory safety, including important signs and labels found on scientific instruments in laboratories. Students will learn beginner to intermediate level Japanese in an immersive learning environment, focusing on practical Japanese for foreigners in Japan.
All
Term
1
Credits

Noriyuki Satoh
Learn about the most recent theory and techniques in evolutionary and developmental biology with an emphasis on the underlying molecular genomics. Trace the history of animal body plans, and consider the genetic toolkits responsible for this evolution. Examine recent advances in decoding the genomes of various animals, plants and microbes. Through class presentations, critically analyze research in developmental biology and present findings on topics such as comparative genomics, the evolution of transcription factors and signal transduction molecules and their relation to the evolution and diversification of the various complex body plans present through history.
Prior knowledge
Undergraduate level Cell Biology and Genetics or similar background knowledge required.
3
Term
2
Credits

David Armitage
Investigate the fundamental question of ecology: the processes that determine the distribution and abundance of organisms. Through reading, discussion, and lecture, explore the principles governing population dynamics over time and space, theories of community assembly and species coexistence, and processes of material cycling through ecosystems. Differentiate and critique major theories of population and community ecology, develop and analyze simple population dynamic models, critically evaluate primary literature and cogently summarize a scientific controversy through writing. Beyond the core subject matter, identify more general principles of the causal feedbacks, scale dependencies, and contingencies of complex social systems.
Prior knowledge
Undergraduate level biology and calculus recommended but not required.
1
Term
2
Credits

Evan P. Economo
From the diversification of lineages over billions of years, to the rise of modern humans, to ongoing global pandemics, evolution underpins our understanding of living systems. Through lectures, discussion, and critical reading, this course focuses on fundamental theoretical and empirical aspects of evolutionary science, and how these are applied to both understanding the natural world and our place within it. Substantial practice is provided in reading, discussing, critiquing, and writing scientific literature. Assessment via term papers and assignments will reflect theoretical concepts, relate evolutionary events to scientific evidence, and apply it to contemporary problems.
Prior knowledge
Students in the life sciences are highly encouraged to take a Fundamentals of Ecology course prior to this course. However, it is not required.
2
Term
2
Credits

Yasha Neiman
We begin by introducing tensors in nonrelativistic physics. We then give an overview of Special Relativity, and discuss the special nature of gravity as an “inertial force”. With this motivation, we develop the differential geometry necessary to describe curved spacetime and the geodesic motion of freefalling particles. We then proceed to Einstein’s field equations, which we analyze in the Newtonian limit and in the linearized limit (gravitational waves). Finally, we study two iconic solutions to the field equations: the Schwarzschild black hole and FriedmanRobertsonWalker cosmology. We will use Sean Carroll’s textbook as the main reference, but we will not follow it strictly.
This is an alternating years course.
Prior knowledge
Prerequisites: Maxwell’s equations in differential form. Solving Maxwell’s equations to obtain electromagnetic waves. Linear algebra of vectors and matrices.
1
Term
2
Credits

Tomomi Kiyomitsu
A handson introduction to the key concepts of genetics and advances in modern genetic technologies. Learn about fundamental principles of genetics underpinning biologically inherited traits, from classical population genetics to modern molecular genetics. Investigate modern genetic technologies for sampling, analysing, and editing genes and experience gene manipulation in the laboratory using CRISPR/Cas9 technology in cultured cells. Discuss the various advantages, drawbacks, and ethics of particular geneediting technologies.
Students who complete this course will understand the key concepts of genetics and the advantages of modern genetic technologies. In addition, through the exercise of genome editing using cultured human cells, students can realize the power, simplicity of use, and potential risks of genome editing technologies.
Prior knowledge
No prerequisite courses.
Suggested to take this course alongside/after B27 Molecular Biology of the Cell
1
Term
2
Credits

Gail Tripp
This course is designed to introduce students to research with human subjects. The course will cover study conceptualization, research design, sampling and data collection methods, ethics, and statistical treatment of data. The emphasis will be on behavioral sciences research, but the content will generalize across study fields.
Target Students
The course will be of interest to those undertaking human subjects research or working with human subjects’ data. Those interested in extending their understanding of clinical and behavioral sciences research will also find the course valuable.
Course Materials
Readings will be assigned. This will include original research articles, research methods papers, and sections of relevant research methods textbooks. The latter will be provided by the faculty member teaching the course. In addition, students will be expected to undertake their literature searches to identify resources for course assignments.
Assessment items
This course will be fully (100%) internally assessed. Both class participation and assignment completion will contribute to the final grade.
1. Class participation (30% of grade)
Completion of weekly readings; responses to weekly thought questions; active participation in class discussions.
Given the importance of active class participation, attendance is expected.
2. Preparation of an information letter(s) and consent form(s) for a human subjects’ research study, (20% of grade)
For this assignment students may prepare materials for their own research (if relevant) or select a research paper describing a study with human participants and prepare the information letter(s) and consent form(s) for that study. Students cannot copy/use existing letters/consent forms in completing this assignment.
3. Class presentation, a 2030 minute presentation (20% of grade).
In consultation with the faculty member teaching the class, students will choose a topic (from amongst the course content) to prepare and present to their classmates.
4. Preparation of a grant application/research proposa (background, hypotheses, methods, statistical analyses, significance) for a human subjects’ research study (30% of grade).
Students will identify a research question of interest, design a study to address the question and prepare a research proposal/grant application for the study. The faculty member teaching the class will be available to assist students in identifying research topic/question.
Prior knowledge
There are no prerequisites for this course. Students will be expected to complete assigned readings ahead of class in order to participate fully.
1
Term
2
Credits

Hiroki Ishikawa
In this course, students will learn basic principles of immunology including the cellular and molecular mechanism of innate and adaptive immunity. The course also provides the clinical importance of immunology in various diseases such as HIV/AIDS, autoimmunity and allergy. Then, students will learn how the immune response can be manipulated by vaccination to combat infectious diseases and cancer.
3
Term
2
Credits

The course Independent Study will foster the development of independent study and research skills such as reading and critiquing the scientific literature, formulating scientific questions, and integrating knowledge into a coherent synthesis. Students will undertake a selfdirected program of reading and synthesis of ideas. This course option must be conducted under the guidance of an OIST faculty member acquainted with such work, and will follow common guidelines to ensure academic standards are maintained. Students should, in consultation with the faculty member, prepare a plan of the study, carry out the appropriate reading and tasks, and then describe the results of their study in a substantial report or essay. This course may be taken in any one term, and should be completed within the period of that term. The due date for all work will be at the end of the current term.
Student and tutor should agree on the extent of supervision provided, such as timing and format of facetoface meetings, progress checks, and so on, and the specific assessment tasks for evaluation. This should be detailed in the proposal, and the student and faculty should commit to this undertaking. Proposed Independent Studies require approval by Curriculum and Examinations Committee.
This course may be taken multiple times for additional credit, using new material.
All
Term
1
Credits

Students may pursue Independent Study using online courses from a variety of educational sources, including Udemy, edX, and Coursera, subject to those courses being approved as relevant to the student's study and of sufficient educational merit and content. The online courses must include assessment and evidence of completion, such as generating a certificate. Upon successful completion of such a course, and after submission of the completion certificate, these external credits may be transferred to the OIST PhD degree for 1 credit per course.
Your online course proposal must be approved by the Curriculum and Examinations Committee before you enroll in the online course, and the course fee can only be reimbursed AFTER successful completion with evidence (such as a completion certificate). Please contact the Curriculum and Programs Section for assistance with online course payment.
Students need to have an OIST faculty member appointed as the Faculty of Record, who is responsible for confirming that the academic content of the course is sufficient for award of a transfer credit. Please include an endorsement notice from the Faculty of Record when making your application.
Note: The total of external course credits permitted (transfer credits at degree entry, online courses, international workshops, and any other external credited courses) must be less than 50% of your degree elective credit requirements. This ensures that OIST teaches more than half of the credits you will take.
All
Term
1
Credits

Julia Khusnutdinova
In this course, students will learn basic principles of electrochemistry with a particular focus on redox behavior of transition metals including metalloproteins. Modern research in application of transition metal complexes for renewable energy storage and production will be highlighted and discussed in detail, including metalcatalyzed water oxidation, proton reduction and CO2 reduction processes. The course will provide practical training in voltammetric techniques and spectroelectrochemistry, and analysis and simulation of cyclic voltammetry data.
See course highlights at: https://groups.oist.jp/cccu/post/2016/12/16/coursehighlightsinorganicelectrochemistry.
1
Term
2
Credits

Workshops, defined as residential short courses in particular topics in a specific scientific or mathematical discipline, and sometimes referred to as Summer Schools, or Winter Schools, etc., are a recognized means of undergoing intensive training in a specific topic or technique. In such workshops, some of the leading scientists in an area gather to share ideas, to keep each other uptodate in the latest techniques and developments, and to teach senior students. Approved workshops for award of credit should comprise an intense two  three week period of lectures and exercise sessions, with at least 40 hours of instruction, and be at a level that is accessible to doctoral students.
International workshops (which may be held in OIST, in Japan, or overseas) must be approved by the CEC as meeting criteria including sufficient content, quality of instruction and instructors, duration, and other criteria as may be deemed necessary. Preference for approval is given to workshops that include assessment and provide a transcript or report from the organisers to OIST.
Students who wish to receive credit for attending such a workshop should first seek approval (before booking travel and registration) from the Graduate School, who will check that the workshop meets approval criteria. The workshop must be appropriate and relevant to the student’s intended thesis research, and be endorsed by the thesis supervisor and academic mentor.
Please use the form at THIS LINK to apply.
All
Term
1
Credits

Tom Froese
Explore key theoretical trends that underpin embodied cognitive science and develop a framework with which to distinguish and define an embodied perspective. Describe the scope and interdisciplinary nature of cognitive science, and identify the main theoretical trends emerging in embodied cognitive science. Learn and discuss the key differences between an embodied perspective compared to the traditional stance. Use the interdisciplinary tools of an embodied cognitive approach to consider open problems and challenges and offer potential solutions. Demonstrate this understanding through weekly written exercises and a final paper. Prior experience in cognitive science (any discipline) is highly advantageous but not essential.
Prior knowledge
Due to the highly interactive and groupbased nature of the course, the number of students is limited to 9 and preference will be given to students with a background in one of the disciplines that form the cognitive sciences.
Please consult with Prof Froese before enrolling.
2
Term
2
Credits

Christine Luscombe
Learn how polymers, widely used in everything from clothing to paints, drug delivery to electronics, function. Discover which applications are appropriate for different polymers, and how polymers can be synthesized. Through classroom discussion, presentations, and journal club, explore the interrelationship between molecular structure, morphology, and properties, develop characterization techniques, and evaluate environmental impact and sustainability issues relating to polymers.
Prior knowledge
None.
1
Term
2
Credits

Xiaodan Zhou
An investigation into the mathematical foundations of calculus. Through lectures and exercises, visit fundamental concepts of mathematical analysis including logic, basic set theory, functions, number systems, order completeness of the real numbers and its consequences, sequences and series, topology of R^n, continuous functions, uniform convergence, compactness, and theory of differentiation and integration. Expand mathematical proof and writing skills through ample practice with LaTex to communicate mathematics effectively and demonstrate rigorous math thinking in preparation for more advanced courses.
Prior knowledge
The course is an introductory course and is designed to be accessible to students that are seeing proofs for the first time. The only prerequisite is an understanding of the results from singlevariable calculus. Successful completion of undergraduate Calculus or equivalent courses is required to take this course. Multivariable calculus is not a prerequisite. If you are not sure about the prerequisite material, please contact the instructor at the beginning of the course.
1
Term
2
Credits

Hiroshi Watanabe
Examine the developmental process of multicellular organisms and how they have evolved through time, including specific molecular mechanisms at the genetic and cell signaling level. Learn about and use software and hardware techniques for researching development in animals. Discuss modern approaches and recent findings in the field through presentations and reports on specific issues in evolutionary developmental biology.
Prior knowledge
No prior knowledge assumed
2
Term
2
Credits

Students will be placed in a laboratory appropriate to their specific needs in terms of language and location. They will participate in laboratory life on a fulltime basis to learn the skills and techniques of that laboratory, to become familiar with laboratory behavior, and to receive training in scientific practice and routine.
All
Term
1
Credits

Course Requirements
 Prepare a written summary of the aims of the rotation. Students will study original publications and discuss with the Professor in charge of the research unit to prepare the aims. The summary should be no more than one page including references and illustrations. The proposal should be submitted to the graduate school (web form). Due date is the last day of the first calendar month of term.
 Undertake the activities in the research unit to fulfill the aims of the rotation. The activities should be completed during the term of the rotation.
 Participate in research unit meetings and seminars during the rotation. The student is expected to attend and as appropriate, ask questions, and join discussions.
 Present the results of the rotation activity as an oral presentation to the laboratory members. One of the three rotations will be presented as an oral presentation to the entire class as a part of Professional Development.
 Submit a written report on the rotation (web form). It is understood that results cannot be expected in so short a time, but the background, including a short literature review, methods used, and activity carried out in the research unit should be described using the scientific language of the field. The report is due on the last day of the final month of term.
 Each student will do a minimum of three laboratory rotations, one per term.
Selection of Rotations
All students will undertake at least three rotations. Assignment of rotations is made by the Graduate School, following information provided by the student in the Academic Plan. Final approval of the selection of rotations will be given by the Dean, taking into account the availability of supervision and the overall program of the student. At least one of the rotations shall be outside the specific field of the student’s academic background.
All
Term
Credits

Liron Speyer
Learn the fundamental objects in algebra, especially representation theory, with handson experience in computing representations and constructing sophisticated proofs for some powerful (and quite beautiful!) results. Practice focuses on the basic structures of simple Lie algebras over the complex numbers, as well as the theory of highest weight representation including Verma modules and enveloping algebras, concluding with Weyl's character formula for finitedimensional simple modules. Additional topics include root systems, Cartan subalgebras, Cartan/triangular decomposition, Dynkin diagrams, and the Killing form.
This is an alternating years course.
Prior knowledge
A solid grasp of undergraduate linear algebra, as well as experience following long proofs and constructing your own proofs. Students must be very comfortable with proofs in order to understand the material in this course and complete the homework questions adequately. If you are unsure, please discuss this further with your academic mentor. Some prior knowledge of the representation theory of finite groups will also be helpful when grappling with analogous results for Lie algebras, but it is not completely necessary.
1
Term
2
Credits

Liron Speyer
A basic math introduction to linear algebra, directed at physics or engineering students, but also beneficial to neuroscientists and others who require linear and matrix algebra in their research. Course assignments offer practice in linear maps between vector spaces, how these can be realised as matrices, and how this can be applied to solving systems of linear equations. Topics include matrix operations, solving systems of linear equations, eigenvalues, eigenvectors, diagonalisation and GramSchmidt orthonormalisation. Not intended for mathematicians.
Alternating year course, first taught AY2021 (and again in AY2023, etc.)
Prior knowledge
Familiarity with real and complex numbers will be assumed. Ideally, students will have had some previous exposure to mathematical proofs, though this is not strictly required.
1
Term
2
Credits

Jonathan Miller
An exploration and practicum in advanced mathematical techniques for application in the natural sciences. The emphasis is on calculating physical quantities using analytical and numerical, exact and approximate methods. Instruction stresses calculational approaches rather than rigorous proofs with substantial practice in analytic calculation skills acquired via problem sets. Examples and applications are drawn from a variety of fields.
Prior knowledge
Calculus, e.g. A104 Vector and Tensor Calculus, Linear algebra, e.g., B29 Linear Algebra
2
Term
2
Credits

Xiaodan Zhou
Explore foundational concepts of modern measure theory that underpin advanced mathematical topics such as functional analysis, partial differential equations, and Fourier analysis. Through lectures and exercises, investigate fundamental concepts of Lebesgue measure and integration theory and apply the definitions and properties of Lebesgue measure and measurable sets. Discussion includes measurable functions, Lebesgue integrals, limit theorems of integrals, the Fubini theorem, and LP space. Using Latex for mathematical writing, hone mathematical proof and writing skills to communicate mathematics effectively and develop rigorous math thinking to prepare for more advanced courses.
This is an alternating years course.
Prior knowledge
B36 “Introduction to Real Analysis” is recommended but not required. The following is expected prerequisite knowledge: basic set theory, mathematical logic, the fundamental property of real numbers; familiarity with limit definitions, and how to use these definitions in rigorous proofs of sequences, continuity and differentiation of realvalued functions; properties of a supremum (or least upper bound) and infimum (or greatest lower bound); basic topology including the definitions of open, closed, compact sets in the Euclidean space; basic definitions and properties of Riemann integrals. Please contact the instructor at the beginning of the course with questions.
1
Term
2
Credits

Filip Husnik
Discover the vast genetic, cellular, and biochemical diversity of life that rests within singlecelled organisms: the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Through literature and laboratory exercises, explore the immense diversity of singlecelled organisms (both prokaryotes and eukaryotes), focusing on their evolution, ecology, genetics, biochemistry, and cell biology, with a focus on the evolutionary history and major cellular innovations that occurred in singlecelled organisms during the evolution of life. Apply these insights to critically analyse research papers, design a research project, and write a grant application. In the laboratory, practice a range of techniques for studying cultured and fieldsampled protists and prokaryotes, including microscopy and genomic approaches.
Prior knowledge
Basic understanding of evolutionary and cell biology at the undergraduate level is assumed. The following courses offered at OIST are recommended to students who first want to review their knowledge: Molecular Biology of the Cell (B27) and Evolution (B37) [or Molecular Evolution (B23)].
1
Term
2
Credits

Amy Shen
Explore the interface between engineering and miniaturization, one of the most intriguing and active areas of inquiry in modern technology, through the interdisciplinary research area of microfluidics. Investigate emerging microfluidics disciplines, including molecular assembly to bulk and device level scales, and applications in novel materials synthesis, biotechnology and nanotechnology. Learn about fundamental aspects of fluid mechanics, scaling laws and flow transport at small length scales with case studies in multiphase flows, dropletbased microfluidics along with capillarydriven, pressuredriven, and electrokinetic based microfluidics. Perform handson lab experiments on standard microfabrication techniques and labonachip device integration.
Prior knowledge
A good pass in B13 Fluid Mechanics is required for A212. If you have taken Fluid Mechanics during your former BSc or MSc degree, please contact Prof. Amy Shen directly to determine whether you are prepared to take A212.
3
Term
2
Credits

Keiko Kono
Survey the molecular biology of the cell, the universal biochemical mechanisms at the heart of all living organisms, through lectures based on the classic text by Alberts et al. Working through researchbased problem sets, explore the cell and its components and constituents from the level of individual molecules to their interaction, dynamics and control at the cellular and intercellular level. Classroom discussions explore new findings that may challenge previous conclusions.
Prior knowledge
No assumed knowledge. The course is very basic. Nonbiology students are welcome.
1
Term
2
Credits

Tom Bourguignon
Life sciences have been greatly influenced by the progress of DNA sequencing technologies. The field of Evolutionary Biology is no exception, and increasingly relies upon fast generation of DNA sequences, that are analysed using fast evolving bioinformatics tools. The aim of this course is to introduce the basic concepts of molecular evolution to students of all scientific backgrounds. We will explore some important questions in Biology, and through concrete examples, determine how molecular evolution theory help answering them. The students will also learn how to use a number of widely used bioinformatics tools.
Prior knowledge
Assumes general knowledge in biology
3
Term
2
Credits

Tadashi Yamamoto
Explore recent progress in cancer research and the mechanism of tumor development (carcinogenesis) from molecular and cellular functions of oncogenes and antioncogenes. Through readings, recent research papers, and handson exercises, gain insights into the relevance of genome sciences and systems biology to cancer research. Study the contributions and relevance of signal transduction, cell cycle progression, cell adhesion, and gene regulation to tumor development and discuss animal models of cancer and modes of treatment and drug development. Visiting speakers provide insight into various advanced topics.
Prior knowledge
Requires at least advanced undergraduate level Cell Biology and Genetics or similar background knowledge
2
Term
2
Credits

Marylka Yoe Uusisaari
The course will start from the mechanisms of animal movement, including the evolutionary, ecological and energetic aspects; we will explore the anatomical and mechanical features of the body machinery (such as muscles, bones and tendons) before investigating the structure and dynamic function of the neuronal circuits driving and controlling movements. We will thus examine neuronal function at various levels, allowing the students to familiarize themselves with many fundamental concepts of neuroscience; the theoretical lectures will be complemented by practical exercises where the students will study movement in themselves and their peers in the motion capture laboratory environment as well as with more classical approaches.
Prior knowledge
This is a basic level course, which will be adjusted according to the interests of enrolled students. No prior knowledge assumed, and suitable for outoffield students.
However, the course B26 Introductory Neuroscience is required if you intend to continue with additional Neuroscience courses.
1
Term
2
Credits

Jeff Wickens
The aim of this course is to engage students in thinking about and discussing fundamental issues in research on neural mechanisms of learning and memory. Topics include the neural mechanisms of learning, memory, emotion, and addictive behavior. Students will be expected to read original reports including classical papers as well as recent advances. The course includes an experimental requirement in which students must design and conduct an experiment related to learning and memory mechanisms of the brain.
Prior knowledge
Students should have previously taken an undergraduate neuroscience course and at least one other basic neuroscience course at OIST; or have completed the equivalent by documented selfdirected study.
3
Term
2
Credits

Kazumasa Tanaka
In this course, we will go over fundamental issues in neural mechanisms of learning and memory, with a focus on memory. In addition to lecture sessions, we will have a journal club and a study section. In the first week of the course, the instructor will list papers for the journal club. Each student chooses one of them and discusses it during the later session. In the study section, students will practice writing a research proposal (as a format of grant) and how to score proposals. The instruction will be provided in the first session.
Prior knowledge
Students interested in memory and have basic knowledge of neuroscience.
3
Term
2
Credits

Yoko YazakiSugiyama
Explore the neuronal mechanisms that underlie and control complex animal behavior. Learn about sensory processing mechanisms responsible for behaviors such as echolocation and sensory navigation. Learn about motor control mechanisms such as central motor pattern generators, stereotyped behavior, and spatial navigation. Discuss the evolutionary strategy and the biological ideas of animal behavior and underlying neuronal mechanisms, including sexually dimorphic behavior, behavioral plasticity, learning and memory, and the critical period. Critically analyze original research papers and literature to provide an understanding of modern experimental techniques in neuroethology.
Prior knowledge
Requires introductory neuroscience course or equivalent.
1
Term
2
Credits

Marco Terenzio
Review receptor signaling and its associated signaling cascades and transcriptional responses as well as peripheral local translation of signaling molecules. Discuss the mechanisms of active transport utilized by the neurons to convey organelles and signaling complexes from the plasma membrane to the nucleus, with a focus on the dynein machinery and retrograde axonal transport. Learn about links between defects in axonal trafficking and neurodegenerative diseases and between local translation of the response to axonal injury and the induction of a regenerative program, in both peripheral and central nervous systems. In the laboratory, learn and use the most recent techniques for neuronal cell culture and the live imaging and quantifying of intracellular transport. Journal clubs develop critical analysis of recent research papers in the field of molecular neuronal signaling and anterograde/retrograde messenger transport.
This course is targeted to students who want to deepen their understanding of neuronal axonal signaling and get some handson experience in intracellular trafficking live imaging.
The aim of this course is to discuss some of the major molecular signaling pathways from the periphery to the cell bodies in neurons. The students are expected to achieve a basic understanding of longrange molecular signaling in neurons and the experimental techniques available for its investigation.
Prior knowledge
This course is an advanced course for neuroscience. It assumes a basic knowledge of cellular biology and neurobiology.
3
Term
2
Credits

Paola Laurino
Discover and apply a range of technologies and techniques to generate, isolate, and enhance mutated bacterial proteins. Lectures and readings about protein structure, function and evolution are complemented by an extensive laboratory project in directed protein evolution that develops applicable research skills. Special topics in protein engineering include gene mutations, ancestral protein reconstruction, and rational design of new enzymes. Explore additional topics by journal club and student presentations.
Prior knowledge
Undergraduate level biochemistry or molecular biology.
1
Term
2
Credits

Emile Touber
Learn computational strategies to explore the rich and fascinating world of nonlinear wave phenomena. Through lectures and simulations, consider waverelated components and systems of balance laws (e.g. mass, momentum, energy) to identify what can trigger frontlike structures such as the formation of shocks and solitons. Develop numerical models to explain wavelike motion by harnessing the explanatory power of hyperbolic partial differential equations (PDEs).
Prior knowledge
Prior knowledge of maths for engineers and physicists.
2
Term
2
Credits

Yohei Yokobayashi
Learn basic principles of nucleic acid chemistry and engineering through lectures and discussions. Build on this basic knowledge to explore current research in the field of nucleic acid chemistry and engineering. Emphasis will be placed on discussing current and future applications of nucleic acids in diverse fields including chemistry, biology, materials, medicine, biosensors, and engineering through current literature. Depending on the number of students and availability of resources, either development of a research proposal or a short laboratory session will be performed.
Prior knowledge
Assumes undergraduate organic chemistry or biochemistry.
2
Term
2
Credits

Ryota Kabe
Explore the exciting interdisciplinary world of organic photonic and electronic devices, with wide application in industry and research. Lectures and accompanying handson experiments develop understanding of fundamental concepts in synthesis and purification of organic optoelectronics. Perform a range of photophysical functional analyses. Discover and discuss device physics and fabrication of organic LEDs, transistors, solar cells, and lasers.
Prior knowledge
Undergraduate level chemistry.
1
Term
2
Credits

Qing Liu
Through lectures and assignments, explore a variety of PDEs with emphasis on the theoretical aspects and related techniques to find exact solutions and understand their analytic properties. Learn both basic concepts and modern techniques for the formulation and solution of various PDE problems. Main topics include the method of characteristics for first order PDE, formulation and solutions to the wave equation, heat equation and Laplace equation, and classical tools to study properties of these PDEs.
Prior knowledge
Singlevariable and multivariable calculus, linear algebra, ordinary differential equations, real analysis, or equivalent knowledge.
3
Term
2
Credits

Bernd Kuhn
Principles of physics of central relevance to modern biological analysis and instrumentation are introduced with an emphasis on application in practical research areas such as electrophysiology, optogenetics, electromagnetics, the interaction of light and matter, and brain recording, stimulation, and imaging.
2
Term
2
Credits

Sam Reiter
Naturalistic animal behavior is complex. Learn the practical skills of how to record and track this complex behavior using modern tools, and the pros and cons of different approaches. Discuss recent work on modeling individual and collective animal behavior while maintaining quantitative rigor, as well as the relationship between behavior and the brain. Investigate connections between behavior and neural activity in the model animal systems of nematode, fruitfly, squid, and mouse. Read and assess papers weekly. Design and complete a short project in studies of complex behavior, with support from relevant literature. Present the results of the project to the class.
Prior knowledge
Introductory neuroscience and preparation in one or more areas of linear algebra, machine learning, or behavioral ecology is recommended.
3
Term
2
Credits

Jason Twamley
Develop skills in the computational modelling of quantum machines and integrated quantum devices used for fundamental quantum mechanics studies, quantum sensing, quantum communication and quantum computing. Use “engineering” style skills to design and model – theoretically and computationally – various composite quantum devices: integrated photonic with atomic, condensed matter and motional atomic systems including cavity quantum electrodynamics, cavity optomechanics, Nitrogen vacancy defects in diamond, and levitated quantum systems. Learn and use computational techniques to simulate the properties of integrated quantum devices using python, with a final computational project. Discuss the latest literature in journal club style.
Prior knowledge
Undergraduate quantum mechanics (full year) is required. This includes good knowledge of the quantum matrix mechanics for spin, Schrodinger equation (stationary and time dependent), and the operator treatment of the quantum harmonic oscillator including creation and annihilation operators. Desirable preknowledge includes cavity quantum electrodynamics and atoms interacting with electromagnetic radiation. Introductory level Python is also required.
3
Term
2
Credits

Shinobu Hikami
Learn quantum field theory from lectures and by working through classic and recent papers to follow developments in the field. Progress from a reconsideration of basic concepts in quantum effects acting on electrons and other particles, through to Feynman rules and diagrams, and Weyl and Dirac spinors. Develop these concepts into gauge theories, field quantization, symmetry breaking, and renormalization. Finally consider quantum chromodynamics, gravity and nuclear forces, and possibilities to unified field theory including strings. Confirm these findings through homework exercise sets and a final examination. Due to recent developments, an emphasis is placed on random matrices and knot theory, topological field theory, and applications to topological insulators.
Prior knowledge
Solid undergraduate electrodynamics and quantum mechanics preparation.
3
Term
2
Credits

Philipp Höhn
Working at the interface of condensed matter physics, quantum information theory and highenergy physics, sts study correlation structures in quantum manybody systems and explore their role in determining the physical properties of these systems. The complexity of these systems leads to efficient approximation and renormalization techniques such as tensor networks and the multiscale entanglement renormalization ansatz, which are standard workhorses in the modern literature. Special attention is given to ground states and their entanglement properties, such as entanglement entropy area laws and how correlations decay over distance. Quantum correlations are also intertwined with the spreading of information, investigated in the form of LiebRobinson bounds, and consideration of how (gauge) symmetries affect the correlation structure and computation of entropies. While most of the discussion will focus on finitedimensional manybody systems, some of these questions are studied in terms of quantum field theory at the end of the course. Synthesize these findings in exercise sets, projects, and a final exam.
Prior knowledge
Basic Quantum Mechanics and ideally Advanced Quantum Theory. A further background in Quantum Field Theory and Statistical Physics is helpful.
1
Term
2
Credits

Yoshinori Okada
Discover a range of interesting quantum materials and their unique functionalities. Learn about the concept of materials design and its realization in bulk single crystal growth and epitaxial thin film growth. Learn the principles of single particle spectroscopy, particularly focusing on photoemission and tunneling spectroscopy. Experience quantum materials growth and characterization in the laboratory. Discuss and make presentations on recent literature.
Prior knowledge
Undergraduate level of condensed matter physics
3
Term
2
Credits

Hiroki Takahashi
Work from basic notions of quantum optics to prepare a theoretical foundation that facilitates understanding of the working principles of modern quantum devices, such as linear optical quantum computers, ion traps, and superconducting circuits. Describe physical systems used in quantum technology applications by simple quantum physics of spins (two level systems) and harmonic oscillators. Solve dynamics of quantum systems using master/Schroedinger equations. Explain working principles of important quantum devices and protocols such as cavity QED, quantum inputoutput relation, twoqubit entangling gates, ion traps, Josephson junctions, and some circuit QED. Critically analyze and make presentations on important literature in the field, and demonstrate understanding of quantum optics through regular problem sets.
Prior knowledge
Undergraduatelevel quantum mechanics and linear algebra
3
Term
2
Credits

Yasha Neiman
We begin with a gentle and thorough introduction to Special Relativity, and take some time to have fun with shapes in Minkowski space. We proceed to an advanced treatment of relativistic particles, electromagnetic fields and weak gravitational fields (to the extent that doesn’t require General Relativity). Antiparticles are introduced early on, and we put an emphasis on actions and phase space structures. We introduce the geometric concept of spinors, and the notion of spin for particles and fields. We discuss the Dirac equation and the resulting picture of the electron. We introduce conformal infinity. Time allowing, we discuss a bit of conformal field theory and some physics in de Sitter space.
Prior knowledge
Maxwell’s equations in differential form. Solving Maxwell’s equations to obtain electromagnetic waves. Quantum mechanics.
1
Term
2
Credits

Izumi Fukunaga
The course will cover general concepts and specific modalities as detailed in the table below. Classes alternate between lecturestyle teaching and a journal club. Each lecture will be based on a textbook chapter (Kandel et al’s Principles of Neural Sciences, in combination with other specialised books described in the “Textbooks” section) to cover basic and broad topics, but will also serve as an opportunity to introduce concepts required to understand the research article associated with the lecture.
The course is structured for students who would like to know about sensory systems in the brain at an advanced level. The overall aim is expose students to researchlevel materials, but starting from basic concepts. Topics will include specialisations as well as common principles found in the mechanisms of sensory perception, and will cover the somatosensory, visual, auditory, olfactory systems from transduction to higher cognitive functions. In parallel, the course aims to develop students’ ability to read and discuss primary research articles, to give students an exposure to some of the latest techniques and developments.
Prior knowledge
The course is aimed at students with a background in neuroscience (either at the BSc/MSc level or having successfully completed some of the basic neuroscience course offered at OIST). It assumes knowledge in cellular neurophysiology and neuroanatomy. Most relevant courses at OIST will include B05 (Cellular Neurobiology; desirable), and A310 (Computational neuroscience; highly desirable).
3
Term
2
Credits

The course Special Topics will provide an opportunity for students to study topics concerning recent scientific breakthroughs, cutting edge research of topical interest, novel, state of the art technologies, and techniques not otherwise available, with leading international experts in those topics or technologies.
This course option must be conducted in collaboration with a faculty member to provide internal academic oversight and guidance, and will follow common guidelines to ensure the required academic standards are maintained.
Each Special Topics course will require the approval of the Dean before being offered.
Students will be required to obtain the approval of the Academic Mentor or Thesis Supervisor before taking the course, and complete a defined piece of work as part of the course.
All
Term
1
Credits

Denis Konstantinov
Explore and explain key ideas of physical kinetics, for systems both at equilibrium and then driven out of equilibrium by a variety of factors. Derive the very important relation (FDT) between fluctuations and dissipation in a dynamic system coupled to a noisy environment. Describe (within certain approximations) the dynamics of classical systems driven out of equilibrium. Apply models and equations to quantify the transport properties of some idealized solidstate and condensedmatter systems. Extend some of these ideas to quantum systems, in particular those interacting with an environment, and explore the dynamics of dissipative ("open") quantum systems. Develop an intuitive understating of the physical picture rather than pursuing a rigorous mathematical description of the phenomena with numerous examples and model problems from solid state and condensed matter physics, atomic physics, and quantum optics, and reinforce these with regular problem sets.
Prior knowledge
Statistical Physics (B12) or Statistical Mechanics, Critical Phenomena and Renormalization Group (A225); anything equivalent to a basic course on Nonrelativistic Quantum Mechanics.
3
Term
2
Credits

Reiko Toriumi
The course is designed as an introduction to the methods of statistical mechanics and evolves into critical phenomena and the renormalization group.
The analogy between statistical field theory and quantum field theory may be addressed throughout the course.
Key concept which will be emphasized in this course is universality; we concern systems with a large number of degrees of freedom which may interact with each other in a complicated and possibly highly nonlinear manner, according to laws which we may not understand. However, we may be able to make progress in understanding behavior of such problems by identifying a few relevant variables at particular scales. The renormalization group addresses such a mechanism.
Some selected topics are planned to be covered, such as conformal field theory, vector models/matrix models, SLE.
Prior knowledge
Students should have knowledge of Classical Mechanics and Quantum Mechanics to advanced undergraduate level.
1
Term
2
Credits

Tomoki Fukai
Learn the mathematical methods to analyze highdimensional data for statistical inference. Use large data sets to construct a statistical model that not only describes the dataset but also allows for prediction of future data. Progress from simple regression models through more sophisticated techniques for dimensional reduction, categorization, and decision making. Use Bayesian approaches and clustering techniques as an introduction to machine learning. Weekly exercises and homework consolidate this learning.
This course provides an introduction to machine learning. Students are required to have some knowledge and skills in mathematics. However, the course is not intended for pure theorists.
This course can be taken immediately after the course B31 Statistical Testing, or as a standalone course.
Prior knowledge
Basic knowledge and skills in linear algebra (matrix, eigenvalues, eigenvectors, etc.), calculus (differentiation and integration of functions), and probability theories (Gaussian and some other distributions) are required. Skills in Python programming are also required for exercises.
2
Term
1
Credits

Nic Shannon
Explore why matter can exist in more than one phase, and how it can transform from one phase into another. Develop the ideas of entropy, free energy and thermal equilibrium starting from the question “what is temperature?”. From the context of thermodynamics, and as natural consequences of a statistical description of matter, develop a simple physical picture of phase transitions with an emphasis on the unifying concept of broken symmetry. Demonstrate understanding of the subject through weekly problem sets, and deliver a final presentation on a modern example of the application of statistical physics ideas, chosen by the student. Accessible to students from a wide range of education backgrounds.
Prior knowledge
Undergraduate calculus and algebra.
1
Term
2
Credits

Tomoki Fukai
Develop the basic methodology of hypothesis testing for statistical analysis of experimental and simulation studies. Through lectures and exercises using Python, explore the fundamentals of probability theory, population statistics, and statistical methods including pvalues, ttest, Utest, Welch test, confidence intervals, single and multivariate analyses, and correlations. Extend these concepts with discussion of information theory, mutual information, and experimental design.
Students who have not learned the basics of statistical methods and will conduct experimental studies or numerical simulations in the future are encouraged to take the course.
Prior knowledge
Students are expected to have basic knowledge of elementary mathematics such as differentiation, integration, and elementary linear algebra. However, whenever necessary, mathematical details will be explained.
Students will need to write some code in Python.
2
Term
1
Credits

Simone Pigolotti
A broad introduction to stochastic processes, focusing on their application to describe natural phenomena and on numerical simulations rather than on mathematical formalism. Define and classify stochastic processes (discrete/continuous time and space, Markov property, and forward and backward dynamics). Explore common stochastic processes (Markov chains, Master equations, Langevin equations) and their key applications in physics, biology, and neuroscience. Use mathematical techniques to analyze stochastic processes and simulate discrete and continuous stochastic processes using Python.
Prior knowledge
Calculus, Fourier transforms, probability theory, scientific programming in Python.
3
Term
2
Credits

Yabing Qi
Discover the fundamental properties of physics and chemistry occurring at surfaces and interfaces, central to many recent developments in science and technology, such as physical chemistry, electronic devices, catalysis, semiconductor processing, new materials development, biomaterials, biotechnology and biomedicine, nanotechnology, and others. Through lectures, projects, and assignments, learn the basic concepts of the field, and operation principles of major analytical techniques and instruments, such as scanning tunneling microscopy (STM), atomic force microscopy (AFM), Xray photoelectron spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS). Discuss the applications of these concepts and instruments in various research fields.
Prior knowledge
General knowledge in physics and chemistry.
2
Term
2
Credits

Akimitsu Narita
Learn classical and modern approaches in the organic synthesis of molecular nanocarbons and related compounds, with a focus on large polycyclic aromatic hydrocarbons that are also recently called nanographenes. Explore the relationship between their structures and optical, electronic, and magnetic properties along with related analytical techniques. Discover relevant methods in polymer chemistry and surface sciences for synthesis and characterization of graphene nanoribbons and other carbon nanostructures. Discuss the latest developments in the related research areas in class presentations.
Prior knowledge
Undergraduatelevel general chemistry; Advancedlevel organic chemistry.
3
Term
2
Credits

Vincent Laudet
Learn about the rich diversity of fish and the incredible array of traits, behaviors, and survival mechanisms they display. Through lectures, projects, and discussions, use the diversity of fish to examine how they interact with, and are shaped by, their diverse environments. Integrate results from the scientific disciplines of ecology, physiology, and biophysics and explore the value and limits of biological models. Conduct a bibliographical research project that uses viewpoints from several scientific disciplines to solve a biological question about a species of fish, and present your findings.
1
Term
2
Credits

Satoshi Mitarai
Learn how climate and climate change are driven by interactions between the ocean and the atmosphere, the two key components of the Earth system. Discuss global energy balance, atmospheric circulation, surface winds and ocean circulation, deepsea thermohaline circulation, Holocene climate, the El Niño Southern Oscillation, projections of future atmospheric CO2 and other greenhousegas concentrations, and the effects of climate change on marine environments. Create, analyze, and present predictions using the latest atmosphereocean coupled general circulation models (CMIP) to assess potential effects of climate change on oceanatmosphere systems. Explore past global changes and those anticipated in the future due to anthropogenic carbon releases, based upon IPCC future climate change scenarios and past climate records. Develop tools to describe the influence of climate change on ocean environments quantitatively, and to consider potential outcomes for marine ecosystems on which students' own research is focused.
Prior knowledge
Vector calculus, boundary problems, differential equations, and coding ability required.
3
Term
2
Credits

Pinaki Chakraborty
Explore a wide spectrum of flows from nature to engineering while learning the basic concepts, equations, and methods of fluid mechanics. Consider conservation laws and constitutive equations, derive the NavierStokes equations, and interpret exact and approximate solutions. Discussion includes an introduction to the theory of hydrodynamic stability and turbulent flows.
Prior knowledge
Prerequisite is A104 Vector and Tensor Calculus, or equivalent.
2
Term
2
Credits

Gustavo Gioia
An introduction to the basic concepts, equations, and methods of the mechanics of solids, including solutions of representative problems in linear elasticity. Through lectures and reading exercises, discover the concepts of stress and strain, and discuss conservation laws and constitutive equations. Derive the Navier equations of linear elasticity, and use them and the Airy stressfunction method to understand the mechanics of fracture and of plastic deformation. Solve problems to illustrate the behavior of cracks, dislocations, and forceinduced singularities in applications in materials science, structural engineering, geophysics, and other disciplines.
Prior knowledge
Prerequisite is A104 Vector and Tensor Calculus. Requires undergraduatelevel knowledge of calculus and differential equations.
3
Term
2
Credits

Students work in the laboratory of the Professor under whom they wish to conduct their thesis research. They undertake and write up preliminary research work, complete an indepth literature review and prepare a research plan. The preliminary research work should include methods the students will use in their thesis research. The literature review should be in the area of their thesis topic and be of publishable quality. The research plan should comprise a projected plan of experiments to answer a specific question(s) and place the expected outcomes against the current state of knowledge, and should take into account the resources and techniques available at OIST. The research data generated in this proposal may be included in the subsequent doctoral thesis, if appropriate.
All
Term
Credits

Thomas Busch
The course will start out by introducing the fundamental ideas for cooling and trapping ultracold atoms and review the quantum mechanical framework that underlies the description of interacting matter waves in the ultracold regime. This will introduce the idea of degenerate Bose and Fermi gases, and in particular the concept of BoseEinstein condensation.
After this the main properties of BoseEinstein condensates will be discussed, including coherence and superfluidity, and for Fermi gases the physics of the BCS transition will be introduced. Conceptually important developments such as optical lattices, Feshbach resonances, artificial gauge fields and others will be explained in detail as well. New developments in the area of strongly correlated gases will be introduced and applications of cold atoms in quantum information or quantum metrology provide the final part of the course.
The course will mostly focus on the theoretical description of ultracold quantum gases, but regularly discuss experimental developments, which go with these.
Prior knowledge
While the fundamental concepts of atomic physics and quantum mechanics that are required will be reviewed in the beginning of the course, basic prior knowledge of quantum mechanics is required (e.g. undergraduate quantum mechanics).
Companion course to A211 Advances in Atomic Physics
2
Term
2
Credits

Keshav M. Dani
This course will be an introductory graduate level course to initiate students into the techniques of ultrafast spectroscopy. They will be introduced to the basic concepts underlying subpicosecond phenomena in nature (ultrafast chemical processes, femtosecond electron dynamics in materials, etc.) and the tools used to study such phenomena (pumpprobe spectroscopy, Terahertz Time Domain Spectroscopy, etc.).
3
Term
2
Credits

Eliot Fried
A geometrically oriented introduction to the calculus of vector and tensor fields on threedimensional Euclidean point space, with applications to the kinematics of point masses, rigid bodies, and deformable bodies. Aside from conventional approaches based on working with Cartesian and curvilinear components, coordinatefree treatments of differentiation and integration will be presented. Connections with the classical differential geometry of curves and surfaces in threedimensional Euclidean point space will also be established and discussed.
Prior knowledge
Multivariate calculus and linear (or, alternatively, matrix) algebra.
1
Term
2
Credits