Faculty and Research

The professoriate at OIST numbers about 60 faculty members with strongly international backgrounds, each leading cutting edge research in a range of disciplines. OIST does not have traditional academic departments, but you can use the tabs or keyword search to find faculty members according to their discipline or research topics.

To learn more about the Brain Mechanism for Behaviour Unit (Gordon Arbuthnott) visit the unit website
Gordon Arbuthnott
BSc PhD (Aberdeen)

The Brain Mechanisms for Behaviour Unit studies the over- or underproduction of dopamine, a reward chemical produced by certain neurons in the brain. Using techniques in physiology, molecular genetics, and anatomy to investigate dopamine’s role in neural systems, the Unit studies the basic mechanisms of how animals, including humans, interact with the world. The results are relevant to diseases ranging from addiction to Parkinson’s Disease.

To learn more about the Computational Neuroscience Unit (Erik De Schutter) visit the unit website
Erik De Schutter
BMed, DMed, HabMed from The University of Antwerp

The Computational Neuroscience Unit studies how neurons and microcircuits in the brain operate. Unit researchers explore the influences of neuronal morphology and excitability on common neural functions such as synaptic plasticity and learning, and determine how molecular mechanisms enable these functions. Their studies focus on the cerebellum, as it has a relatively simple anatomy and the physiology of its main neurons is well known, allowing detailed modeling at many levels of complexity.

To learn more about the Neural Computation Unit (Kenji Doya) visit the unit website
Kenji Doya
BS, MS, and PhD from The University of Tokyo
Research Associate, Howard Hughes Medical Institute at the Salk Institute (1993-1994)
Senior Researcher, Advanced Telecommunications Research Institute International (ATR, 1994-2011)
Principal Investigator, OIST (2004-2011)
Professor, OIST Graduate University (2011-present)

Formerly at UC San Diego, the Salk Institute and the ATR Computational Neuroscience Laboratories

The Neural Computation Unit develops algorithms that elucidate the brain’s mechanisms for robust and flexible learning. The Unit focuses on how the brain processes reinforcement learning, in which a biological or artificial agent learns novel behaviors in uncertain environments by exploration and reward feedback. Top-down computational approaches are combined with bottom-up neurobiological approaches to achieve these goals.

To learn more about the Sensory and Behavioural Neuroscience Unit (Izumi Fukunaga) visit the unit website
Izumi Fukunaga
Ph.D. University College London
B.Sc. University College London

The Sensory and Behavioural Neuroscience Unit seeks to understand how the brain processes incoming sensory information from the environment. We study how circuit mechanisms on different spatial and temporal scales underlie the sense of smell using a variety of modern systems-neuroscience methods. We seek to analyze the logic of local circuitry, to understand how these are ultimately used to guide behaviour, and how behaviorally-relevant signals across the brain shape the processing in olfactory sensory areas.

Courses:
To learn more about the Optical Neuroimaging Unit (Bernd Kuhn) visit the unit website
Bernd Kuhn
Diploma, University of Ulm
Dr rer. nat., Technical University of Munich

The Optical Neuroimaging Unit develops novel techniques to investigate two fundamental questions in neurobiology: how behavior arises from cellular activity, and how the brain processes information. Kuhn, the Unit head, has built two-photon laser scanning microscopes that enable him to reconstruct 3D images of neurons with micron resolution and to observe neuronal activity, both in awake mice.

To learn more about the Cellular & Molecular Synaptic Function Unit (Tomoyuki Takahashi) visit the unit website
Tomoyuki Takahashi
MD, PhD, Tokyo Medical and Dental University

The Cellular and Molecular Synaptic Function Unit strives to understand the mechanisms that regulate neurotransmitter release at synapses by studying the calyx of Held, a synapse large enough to enable simultaneous measurements of presynaptic and postsynaptic electrical signals. Insights into synaptic transmission should lead to a better understanding of neuronal communication.

To learn more about the Human Developmental Neurobiology Unit (Gail Tripp) visit the unit website
Gail Tripp
BSc (Honours), PhD, PGDipClPs

The Human Developmental Neurobiology Unit investigates the nature, causes and management of ADHD. Unit members study why children diagnosed with ADHD respond differently to reinforcement, and they work with colleagues overseas conducting fMRI and drug studies to explore the disorder’s underlying neurobiology. The Unit is also studying the social problem solving skills of children with ADHD and developing a skills program for Japanese parents dealing with ADHD.

To learn more about the Neuronal Rhythms in Movement Unit (Marylka Yoe Uusisaari) visit the unit website
Marylka Yoe Uusisaari
PhD, Helsinki University, Finland, 2003
M.Sc, Helsinki University, Finland, 1999

The ultimate aim of the brain is to generate behaviour, virtually always enacted through body movements that are deliberate and well-timed. The Neuronal Rhythms in Movement Unit seeks to uncover and understand the “master clock” underlying the spatio-temporal coordination of motor activity, through anatomical, electrophysiological, computational and behavioural viewpoints, with a particular focus on natural locomotion and the olivo-cerebellar system. 

Courses:
To learn more about the Formation and Regulation of Neuronal Connectivity Research Unit (David Van Vactor) visit the unit website
David Van Vactor
BA, The Johns Hopkins University
PhD, the University of California, Los Angeles

The synapses in our brains communicate via chemical signals billions of times per second in order to sense and respond to the world around us. The Formation and Regulation of Neuronal Connectivity Research Unit studies the assembly and maintenance of healthy synapses, using the fruitfly model to explore the genetics regulating neural development.

Courses:
To learn more about the Neurobiology Research Unit (Jeff Wickens) visit the unit website
Jeff Wickens
BMedSc, MBChB, PhD, The University of Otago

The goal of the Neurobiology Research Unit is to understand neural mechanisms of learning in the brain. The Unit studies physical changes that take place in synapses due to learning experiences, and how these changes depend on dopamine, a chemical that plays a key role in motivation. This research has the forward goal of developing better treatments for disorders such as Parkinson’s disease and attention-deficit hyperactivity disorder. 

To learn more about the Neuronal Mechanism for Critical Period Unit (Yoko Yazaki-Sugiyama) visit the unit website
Yoko Yazaki-Sugiyama
BSc, Japan Women’s University
MSc, PhD, Sophia University

When we are young, our brains adapt at the whim of our sensory environments. The Neuronal Mechanism for Critical Period Unit studies how this ‘critical period’ of malleability in the young is orchestrated within the brain. Zebra finches, the Unit’s model organism of choice, learn to sing from their auditory experiences as young birds, allowing researchers to explore what is happening during this marvelous period.

To learn more about the Femtosecond Spectroscopy Unit (Keshav Dani) visit the unit website
Keshav Dani
M.A., Ph.D. in Physics. University of California at Berkeley, Berkeley, CA
B.S. with Honors in Mathematics. California Institute of Technology, Pasadena, CA

Using intense, ultrafast laser pulses, the Femtosecond Spectroscopy Unit explores the optical properties of matter. Its members study graphene and other two-dimensional materials for their potential in transparent, flexible electronics; research semiconductors for photocatalytic and solar energy applications; and investigate applications of ultrafast laser pulses to biology and medicine.

To learn more about the Membrane Cooperativity Unit (Akihiro Kusumi) visit the unit website
Akihiro Kusumi
B.Sc. (Biophysics) Department of Biophysics, Kyoto University, 1975
D.Sc. (Biophysics) Department of Biophysics, Kyoto University, 1980

The Membrane Cooperativity Unit tries to understand how cooperative molecular interactions in/on the plasma membrane enable the membrane to work. For this purpose, our unit is dedicated to (1) developing unique methodologies to observe single molecules at world-fastest frame rates and manipulate them at will in living cells, and (2) elucidating the mechanisms for the plasma membrane organization and function, with particular emphases on signal transduction and neuronal network formation, by extensively using single-molecule technologies.

Courses:
To learn more about the Information Processing Biology Unit (Ichiro Maruyama) visit the unit website
Ichiro Maruyama
PhD, The University of Tokyo

All life, from bacteria to humans, senses and responds to its environment in various ways. The Information Processing Biology Unit explores how sensory organs detect external information, how neurons communicate, and how the brain processes information at the molecular level. Results of this research can improve our understanding of the mechanisms of cognitive diseases in humans, help in drug design, and lead to better computers, sensors and other information processing devices.

To learn more about the Developmental Neurobiology Unit (Ichiro Masai) visit the unit website
Ichiro Masai
BSc, MSc, PhD, the University of Tokyo

The Developmental Neurobiology Unit uses the zebrafish as a model system to study the mechanisms that control cell development and tissue building. OIST’s high-capacity aquarium system houses some 200,000 fish in 4,800 tanks to maintain mutant and transgenic lines of zebrafish for projects that investigate how the vertebrate retina develops.

To learn more about the Biological Physics Theory Unit (Greg Stephens) visit the unit website
Greg Stephens
BSc, Ohio University
MSc, Syracuse University
PhD, The University of Maryland

While physicists have long searched for universal laws that explain the nature of matter and energy, until recently the complexity of biological systems proved daunting. The Biological Physics Theory Unit searches for simple, unifying principles in the brains and behavior of living systems. Working closely with experimentalists, Unit members combine quantitative biological measurements with theoretical ideas drawn from statistical physics, information theory, and dynamic systems.

Courses:
To learn more about the Cognitive Neurorobotics Research Unit (Jun Tani) visit the unit website
Jun Tani
Dr. Eng. Sophia University Tokyo
MSc University of Michigan, Ann Arbor, USA
BSc Waseda University, Tokyo

The cognitive neurorobotics research unit focuses on understanding brain-based mechanisms for cognition and action by conducting synthetic brain modeling studies with utilizing robotics experiment platforms. The essential research questions include how compositionality in cognition and actions can be developed via consolidative learning of behavioral experiences, how novel actions and thoughts can be generated with “free will”, how social cognition can be developed to support spontaneous generation of cooperative behaviors with others. We investigate these problems by taking interdisciplinary approaches.

Courses:
To learn more about the Evolutionary Neurobiology Unit (Hiroshi Watanabe) visit the unit website
Hiroshi Watanabe
B.S. (Tokai University)
M.S. (Tokyo Institute of Technology)
Ph.D. (Tokyo Institute of Technology)

The Evolutionary Neurobiology Unit investigates basic developmental and physiological nature of the nervous system. We study new experimental models of cnidarians and other basal metazoans with cutting-edge techniques in genetics and neuro-imaging. An ultimate goal of our unit is to provide new insights into our understanding of the early evolutionary processes of the cellular “neuronalization” and neural centralization.