Courses

Course Coordinator:
Gordon Arbuthnott
Course Type:
Elective
Course Category:
Other
Term:
1
Credits:
2

The course Controversies in Science aims to develop critical thinking and argument, essential skills for effective independent scientists. The course will be flexible in content and presentation. Invited lecturers will present topics of some controversy or recent interest in science and lead debates by the students.

Course Coordinator:
Hiroaki Kitano
, Igor Goryanin
Course Type:
Elective
Course Category:
Mathematical and Computational Sciences
Term:
3
Credits:
2
Prior Knowledge:

Requires at least advanced undergraduate level Cell Biology and Genetics or similar background knowledge, plus B22 Computational Methods or similar coding experience.

Computational approaches to science in general, and particularly in biology, are an increasingly important topic. However, understanding the concepts behind such computational approaches in biology is particularly difficult due to discrepancies in the methodologies and languages that are used. This course covers basics of computational and mathematical biology with strong emphasis on understanding of computational foundation and practical modeling of metabolic networks and signal transduction networks.

Course Type:
Elective
Course Category:
Molecular, Cell, and Developmental Biology
Term:
2
Credits:
2

To understand the function of protein at the molecular level, it is always very helpful, if not necessary, to have the 3D structure of proteins. Protein X-ray crystallography is one of the most powerful methods to obtain high-resolution 3D structures of proteins. A successful use of this method requires a good knowledge of the sample (i.e. the protein). This implies using few biophysical and biochemical methods. Prior to starting a project in structural biology, there are many bioinformatics tools that would help to assess the feasibility of the project. Is the protein available?

Course Coordinator:
Ichiro Maruyama
Course Type:
Elective
Course Category:
Other
Term:
3
Credits:
2

This course is intended to provide an introduction to cutting-edge techniques that might be useful for research projects by graduate students at OIST. Such techniques include nucleotide sequencing, microarray, confocal laser scanning microscopy, microfluidics and neuroimaging. Each session will be composed of a lecture relevant to the technique. Where possible, hands-on training or research laboratory visits will also be provided, and technical presentations will be invited from leading experts. 

Course Type:
Elective
Course Category:
Other
Term:
All
Credits:
1

The course Independent study will foster the development of independent study and research skills such as reading and critiquing the scientific literature, formulating scientific questions, and integrating knowledge into a coherent synthesis. Students will undertake a self-directed program of reading and synthesis of ideas.  This course option must be conducted under the guidance of the faculty member most acquainted with such work, and will follow common guidelines to ensure academic standards are maintained.

Course Type:
Elective
Course Category:
Other
Term:
All
Credits:
1

The course Special Topics will provide an opportunity for students to study topics concerning recent scientific breakthroughs, cutting edge research of topical interest, novel, state of the art technologies, and techniques not otherwise available, with leading international experts in those topics or technologies.  

This course option must be conducted in collaboration with a faculty member to provide internal academic oversight and guidance, and will follow common guidelines to ensure the required academic standards are maintained. 

Course Type:
Elective
Course Category:
Other
Term:
All
Credits:
1

OIST hosts several residential workshops each year, with a strong reputation for presenting and developing top-notch science in specialized fields.  In these workshops, some of the leading scientists in an area gather to share ideas, to keep each other up-to-date in the latest techniques and developments, and to teach senior students.  These workshops comprise an intense two to three week period of lectures and exercise sessions, and are at a level that is accessible to advanced doctoral students.

Course Coordinator:
Matthias Wolf
Course Type:
Elective
Course Category:
Molecular, Cell, and Developmental Biology
Term:
1
Credits:
2
Prior Knowledge:

Ideally combined with A403 Strucutral Biology: Protein Xray Crystallography (Samatey) and A410 Molecular Electron Tomography (Skoglund)

The course is designed as a mix of introductions into selected topics in the theory of transmission electron microscopy followed by practical demonstrations and hands-on exercises, which provide an opportunity to comprehend the concepts by experimenting with commonly-used image processing software. Students will be required to read and digest scientific papers for a subset of lecture topics on their own, which will subsequently be discussed jointly during student presentations with the goal to immerse them into the subject without passive consumption.

Course Coordinator:
Ulf Skoglund
Course Type:
Elective
Course Category:
Molecular, Cell, and Developmental Biology
Term:
3
Credits:
2

The course will show through theoretical and practical work how the 3D structure of a protein can be determined to about 2nm resolution directly in a buffer solution or in tissue. The students will get a direct hands-on experience of the processes involved in the practical and theoretical aspects of molecular electron tomography (MET). The students will be aware of how to carry out their own MET reconstruction and understand the limitations of the method and how to optimize its use.

B05

Course Coordinator:
Gordon Arbuthnott
, Tomoyuki Takahashi
Course Type:
Elective
Course Category:
Neuroscience
Term:
3
Credits:
2

In this course students learn about the cellular and molecular basis of neuronal functions, and how individual electrical signals are integrated into physiological functions.  The course will stress connections between information, computations, and biological mechanisms in processes underlying motivated behavior, and will be taught by discussion of physiological mechanisms that contribute to such behaviors. Students will learn how to evaluate evidence obtained in laboratory studies conducted with animals.